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Phase diagrams for a semi-infinite nematic in contact with a micropatterned surface

T.J. Atherton*

Department of Physics, Case Western Reserve University, Cleveland, Ohio, USA

(Received 21 January 2010; final version 13 May 2010)

Phase diagrams are calculated for the director configuration adopted by a nematic material in contact with a
surface micropatterned periodically with homeotropic and planar stripes, and in which an azimuthal easy axis
orthogonal to the length of the stripes has been imposed upon the planar stripes. Four stable configurations exist: a
uniform homeotropic and a uniform planar state that are preferred when one of the sets of stripes is sufficiently
narrow relative to the other, and two distorted states where the director either lies along the length of the stripes or
perpendicular to them, depending on the period of the patterning and the polar and azimuthal anchoring
coefficients.
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1. Introduction

Micropatterned surfaces are interesting as a means of

arbitrarily controlling the surface orientation of a liquid
crystal [1–7], as a route to bistable displays [8, 9] and as a

template for smectics [10]. It has recently been shown by

the author [1, 11], generalising a theory due to Barbero

et al. [4], that the known tendency [3] of a striped alter-

nating homeotropic–planar micropatterned surface to

align a nematic material along the length of the stripes

is due to elastic anisotropy: the twist deformation that

occurs if the alignment is along the length of the stripes
has, for most nematic materials, a lower energy than the

splay and bend deformation imposed by a configuration

aligned perpendicular to the stripes. If an azimuthal easy

axis is imposed on the planar stripes orthogonal to this

elastically preferred direction, then a threshold beha-

viour is expected. At wavelengths longer than some

critical value lc, where the anchoring energy dominates,

the liquid crystal will follow the imposed easy axis
referred to as the ‘splay-bend’ configuration (Figure

1(a)) while at shorter wavelengths the elastic energy

dominates and so the liquid crystal aligns along the

length of the stripes referred to as the ‘twist’ configura-

tion (Figure 1(b)). For typical values [12–14] of the splay

(K1), twist (K2) and bend (K3) elastic constants ,10–11 N,

and weak azimuthal anchoring Wf,10�6 J m–2, the

critical wavelength is of micrometre order.
A second sort of orientational transition in the same

system has been proposed by Kondrat et al. [7]; if either

set of stripes are sufficiently narrow relative to the others

then the liquid crystal will adopt a uniform bulk config-

uration. If it is the planar stripes that are very narrow, then

the nematic material accordingly adopts a homeotropic

configuration (Figure 1(c)) and vice versa (Figure 1(d)).

In this work, by constructing expressions for the

total energy of all four stable configurations, the com-

plete phase diagram of the semi-infinite nematic liquid

crystal in contact with the homeotropic–planar micro-

patterned surface is evaluated.

2. Model

In order to do so, it is first necessary to evaluate the

energy of the distorted states (see Figure 1(a) and (b)).

Such an expression was derived in a previous paper [1]

to consider the possibility of an azimuthal transition
between the distorted states, but omitted a surface term

that must be included in order to estimate the absolute

value of the free energy. Adopting the coordinate sys-

tem illustrated in Figure 1, in which the x-axis lies

orthogonal to the length of the stripes and the z-axis is

perpendicular to the surface, the director field n̂ must be

a function of x and z alone and may be parameterised as

n ¼ ðcos � cosf; cos � sinf; sin �Þ; (1)

so the Frank–Oseen elastic energy density

fb ¼
1

2
K11ð� � n̂Þ2 þ K22ðn̂ � �� n̂Þ2

þ K33jn̂� �� n̂j2; (2)

within the approximation K1 ¼ K3�K2 has, as before

[1], the form

fel ¼ K1ðk�2
x þ �2

zÞ=2; (3)

where k ¼ ½1� ð1� tÞ sin2 f�, in which t ¼ K2=K1, and

the subscripts indicate derivatives taken with respect to
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the appropriate coordinates. The Euler–Lagrange equa-

tion for the configuration �(x, z) is a scaled version of
Laplace’s equation,

k�xx þ �zz ¼ 0 (4)

with the series solution

�ðx; zÞ ¼ �0 þ 2
X1
n¼1

expð�2np
ffiffiffi
k
p

zÞ

� ½pn sinð2npxÞ þ qn cosð2npxÞ
�
;

(5)

where the coefficients �0, pn and qn are determined

from the boundary condition. By substituting
Equation (5) into Equation (3) and integrating, a gen-

eral expression for the elastic energy per unit length

per stripe may be obtained,

Fel ¼ 2p
ffiffiffi
k
p X1

n¼1

nðp2
n þ q2

nÞ; (6)

where this energy is expressed in units of K1/l, which

shall be adopted for all subsequent free energies.
For a harmonic anchoring potential

W�ð�� �eÞ2=2; (7)

where the easy axis �e is

�e ¼
p
2
; 0 < x � a;

0; a < x � 1;

(
(8)

and a is the homeotropic–planar mark-space ratio, the

natural boundary condition is

�z þ 2
l

L�
ð�� �eÞ

� �
z¼0

¼ 0; (9)

where L� ¼ K1=ðW�lÞ is the characteristic penetration

depth of the surface treatment. Substituting Equation (9)

into Equation (5) and exploiting the orthogonality of the

sin and cos functions, the coefficients

�0 ¼
pa

2
; pn ¼

sin2ðnapÞ
2nð1þ 2npL�

ffiffiffi
k
p
Þ ;

qn ¼
sinð2napÞ

4nð1þ 2npL�

ffiffiffi
k
p
Þ

ð10Þ

are obtained. The bulk elastic energy may be evaluated

by substituting Equation (10) into Equation (6):

Felðk;L�Þ ¼ p
ffiffiffi
k
p X1

n¼1

sin ðnapÞ2

2n ð1þ 2npL�

ffiffiffi
k
p
Þ2
: (11)

The surface anchoring energy, which was not consid-
ered in full before [1], is obtained by substituting

Equation (5) evaluated at z ¼ 0 and Equation (8)

into Equation (7) and integrating:

Fsurfðk;L�Þ ¼
1

2L�

p2a

4
ð1� aÞ

�
�
X1
n¼1

1þ 4npL�

ffiffiffi
k
p

ð Þ sin2ðnapÞ
2n2 1þ 2npL�

ffiffiffi
k
p

ð Þ2

#
:

(12)

Theimposedazimuthaleasyaxisontheplanarstripes,with

a characteristic penetration depth Lf ¼ K1=ðWflÞ where

Wf is the azimuthal anchoring coefficient, and within the

approximation above thatf is constant, has an associated

anchoring energy of the Rapini–Papoular form,

FfðLfÞ ¼
1

2Lf

Z 1

a

cos2½�ðxÞ� sin2ðf� feÞ dx; (13)

where the azimuthal easy axis fe ¼ 0 and where the
integral must be evaluated numerically. Note that,

since for most surface treatments Lf � L�, the contri-

bution of this potential to the boundary condition for

� (Equation (12)) may be neglected; the � dependence

serves only to reduce the anchoring energy density

where the director is more homeotropic.

The total energy per unit length per stripe of the

two distorted configurations may now be evaluated
using Equations (11)–(13): the energy of the splay-

bend configuration, where f ¼ 0 and so k ¼ 1, is

Fsplay�bend ¼ Felð1;L�Þ þ Fsurfð1;L�Þ

(a) Splay-bend (b) Twist

(d) Uniform planar(c) Uniform homeotropic

z

x

Figure 1. Schematicofthepossibleconfigurationsadoptedby
anematicmaterial incontactwithaperiodichomeotropic–planar
striped surface which has been prepared with an azimuthal easy
axis on the planar stripes in the x-direction.

1226 T.J. Atherton

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
4
5
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



and the energy of the twist configuration, wheref¼ p/2

and k ¼ t ¼ K2=K1, is

Ftwist ¼ Felðt;L�Þ þ Fsurfðt;L�Þ þ FfðLfÞ:

Using the harmonic polar anchoring potential

introduced in Equation (7), it is trivial to evaluate the

free energy per unit length per stripe of the uniform

homeotropic (UH) configuration,

FUH ¼
1� a

2L�
;

and also the uniform planar (UP) configuration,

FUP ¼
a

2L�
:

3. Results and discussion

Having expressions for the energy of each configura-

tion, it is possible to determine the least energetic state

for any given values of the parameters t, a, L� and Lf,

and moreover to determine the critical lines that sepa-

rate the various states. For an experimentally fabri-

cated pattern of l ¼ 2mm, and using typical values
[12–14] for the liquid crystal elastic constant

K1,1� 10�11N and polar anchoring energy

W�,1� 10�4Jm�2, L� , 0.02; typically, the azimuthal

anchoring is an order of magnitude or two weaker and

so Lf >e 0:2. Two phase diagrams in the t, a parameter

space are plotted in Figure 2 with critical lines for

several values of L� and Lf, including Lf ¼ 1 which

corresponds to azimuthally degenerate anchoring on
the planar stripes. Notice that the twist state favoured

by elastic anisotropy (i.e. for sufficiently small t)

reduces with decreasing t the width on the a-axis of

the uniform phases. Furthermore, Figure 2 suggests

that it will be necessary to use a material with rather

low polar anchoring energy in order to observe the

uniform-distorted transitions.

Experimental observation of these configurations
will be limited by the ability of the micropatterning

technique to fabricate narrow stripes; photoalignment

methods [15] are constrained to the ultraviolet wave-

lengths while microcontact printing [16] is ultimately

constrained by the mask used to make the stamp. A

further limitation is that, in the present analysis, var-

iation of the scalar order parameter, S, of the nematic

material has been neglected. When the feature size or
wavelength becomes comparable to the nematic

coherence length then partially melted configurations

might represent the ground state.

4. Conclusion

A complete phase diagram has been calculated for the
semi-infinite nematic material in contact with a micro-

patterned homeotropic–planar surface of variable per-

iod and homeotropic–planar mark-space ratio. Where

the ‘twist’ configuration is favourable, which is the

case if the azimuthal anchoring of the antagonistic

easy axis on the planar stripes is sufficiently low and

if K2 , K1, the region of stability for the uniform states

is reduced. This complex phase behaviour may place
constraints on the design of devices that incorporate

micropatterned surfaces.
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Figure 2. Phase diagrams indicating regions of stability
for the four phases: (a) varying the polar anchoring energy
fixing Lf ¼ 0.5; (b) varying the azimuthal anchoring energy
fixing L� ¼ 0.01
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